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Mineral - Organic reactions
» ubiquitous through out the galaxy
» organic matter detected in ISM

» organic molecules in Carbonaceous
Chondrites

* perhaps critical o the prebiotic
Origins of life




Chemistry in
Dense molecular|
Clouds

Gaseous Pillars - M16 ~ HST - WEPC2
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Mineral- organlc reactions occur within
Planetisimals (hydrothermal and thermal)




The formation and Early Evolution of the Earth

Accretion Heating Core-Formation
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Crust-Mantle
Core Differentiation

Mineral catalyzed organic synthetic
reactions may have initiated early
In Earth's history




The origins of life and biosphere
Back ground:

When did life first arise?
Where did first life arise?

How did first life arise?
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life established between 4,400 and 3,800 Million years ago




Where did first life arise?

Various indirect and debatable clues

* Planetary evolution models

* molecular phylogenetics
* bioinorganic chemistry




Bolide Impact on the Earth (Inferred) and Magnitude of Thermal Perturbation

No Ocean Here
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Origin of Life TIME (Ga) After Sleep et. al. 1989




Eukarya
Bacteria Thermo.

toga

Sulfolobus

Pyrococcus

Methano-

Aquifex pyrus

Root

Molecular Phylogenetic Tree (Ribosomal 16S rRNA)

Hyperthermophilic Organisms May be the Earliest Life Forms



Clues from bioinorganic chemistry

"In the 'hidden world' of archaebacteria major catalysts remain
Ni- and Co-based...but today in higher organisms these catalysts
are lost or trivial in extent when compared with iron and copper
Oxidases."

"... The early Earth provided large sources of H2S and various
sulfide surfaces... The source of the unstable minerals and chemicals
was and still is volcanoes and ocean vents”

Fradsto da Silva and Williams, The inorganic Chemistry of Life
1991




Clues to "where" from bio-inorganic chem.

sulfur

molybdenum

Active Center of the enzyme - nitrogenase
Function: Reduce N, to NH; (ammonia)
For nitrogen fixation



Deep Submarine Hydrothermal Vents

Life may have had Hydrothermal Origins




A Cartoon of a Hydrothermal Vent on the Ridge Crest
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Globally significant chemical reactors




If life originated proximal to
Deep ocean hydrothermal vents
How did it begin?




Protometabolism Geochemistry

Synthesis of Polynucleotides

Development of RNA Replication

RNA-dependent Peptide Synthesis
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Development of Translation

Emergence of protein enzymes

Metabolism Biochemistry

After de Duve




Natural Sources of Reducing Power

Volcanic Exhalations: RedOx balanced by (FMQ)...

3Fe,SiO, + 2H,0 <-----> 2 Fe;0, + SIO, + 2H,

Hydrothermal Alteration of Sea Floor....

6(Mg, sFeq5)S10, + 7H,0 > 3[Mg;3S1,05(0H),] +
Fe;O, + H,

The Possibility of Organosynthesis....

> CH, + 2H,0




metastable stable
eqzilibrium equilibrium
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organic synthesis
(kinetic inhibition of methane)|:
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From: Everett Shock OLEB 1990




Experiment. 300 °C 50 MPa

Hydrocarbon Generation Coupled with
Serpentinization [Bernd et. al. 1996]

CH, > CH;, > C;zHg >

Source of Abiotic Lipid Formation




Pyr'iTe PU”Qd metabolism (Wdch’rershduser, 1988)

FeS + H,S --> FeS, + 2H" + 2e-

CO, + 2H* +2e” --> H,CO,

FeS + CO, + H,S -> FeS, + HCOOH (A6, < 0)




The Synthesis of Methane thiol using the
Reducing power Of FeS-> FeSZ (Heinen & Lauwers, 1996)

€O, +3H, + H,S -> CHySH + 2H,0

The Synthesis of Acetic Acid from methane

Thiol and MXSY (Hiber & Wdchtershduser, 1997)

CO +CH,SH + H,0 -> CH,COOH + H,S




Hydrothermal Mineralogy
An Abundance of Transition Metal Sulfides
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Pyrite (FeS,), Pyrrhotite (Fe,_S),
Chalcopyrite (CuFeS,), Sphalerite (ZnS)
And others.




Sphalerite

Nature's Catalysts ?




Hydrothermal Experiments: Temperatures 100-250 °C
Pressures - 200 - 2000 atm.

Explore Mineral
Catalysis

- Pure MS,

+ GC/MS, HPLC

- UV/Vis, Raman




The Assay Reaction: Hydrocarboxylation
aka the Koch reaction

R-SH + CO, + H, R-COOH + H,S

Where R = CH;(CH,), inour case n = 8

Reaction conditions for optimum assay
I.e. total saturation of active sites




Carbonyl Insertion on Mineral Sulfide Surfaces

R = CH;(CH,)g [Nonyl group]







Alkyl Cation Transfer: Dialkyl sulfide

R = CH3(CH,)g [Nonyl group]







Formation of CH; From CO Reduction

R = CH,(CH,), [Nonyl group]







Different transition metal sulfides exhibit variations in
Reaction selectivity

This suggests that fine admixtures of 2, 3, ... might
Work synergistically

Similarly, doping of pure phases with other metals
May be expected to produce interesting possibly
Synergistic effects
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B NiS
A Ni3S2
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Reaction: Aqueous Formic Acid - FeS 250°C 200 MPa 6h
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Nanometers
Yield of Iron Carbonyl: 2 % of Fe and 17 % of C;




Additional Reactions Involving FeS, CO, and Alkyl Thiols

FeS + 5CO <*» Fe(CO); + SO
2RSH + S0 =* R.S.SSS.R + H,

2R-SH + 2Fe(CO)5 <> Fe,(RS),(CO); + 4CO + H,




Reaction: Aqueous Formic Acid - FeS - Nonylthiol
250°C 200 MPa 6h

2.5_ .‘

c
@)
=
o
b
o
7,
la!
<

200 MPa

|
300 350 400 450 500 550 600 650 700
Nanometers

Iron-sulfur Carbonyls + 20-50% Dissolution of FeS




Carbonylated Fe-S Clusters & Biochemical Connections

‘H-Cluster’ in Hydrogenase

Product of FeS Rxn’s 2-Fe domain with CO or CN
With Formic Acid and ligands

Nonyl-thiol @ HIPand T







The Ubiquity of Hydrogenase

Methanogens

co,

» CH,

Acetogens

CO, » Acetate

Sulfur Reducers
SO, > H,S

Iron Reducers
Fes* > Fest

NO3- Denitrification > N,

Nitrogen fixation
g » NH,

N,

Photosynthesis
CO, 4 > Sugars

Chemautotrophy




Pyruvate Ferrodoxin Oxidoreductase (PFOR) can

Operate in reverse to synthesize pyruvate
(Furdui and Ragsdale, J.Biol.Chem.ZOOO) Pyr-uva're +
CoASH

CODHOX FdRED

CO, +
Acetyl-SCoA




Carbonylated Fe-S Clusters May Promote double
Carbonyl Insertion Reactions

Pyruvate 2-0xo-undecanoic
acid

200 MPa

L U |

*
Retention Time

Low Yields (< 1% ) revealed via SIM Detection




In Primordial Hydrothermal Systems

Adenosine triphosphate
NADH

3.2 Ga (Archean Rocks)

[ancient sea floor: de Ronde et al.1997]
CO,, H,, Transition Metal Sulfides, COS, H.S,

+ Alkenes- e.g. Ethylene, Propene, butene




C02 + 3H2 + HZS q H3C_SH

CcO
2FeS g
2 H.C 3
2FeS
Ve The alpha cycle® of
HS—CH /H(M) Wachtershauser
S

Thiocitric



Decanoic Acid
Synthesis

250° C 200 MPa
NIS Catalyst

STD 1-Nonane Thiol

N+1,1°
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1-Nonene

N+1,2° N+1,1°
Y v
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Methacrylic Acid

Propene




Methacrylic Acid + HCOOH
+ NIS
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Coupled Hydrocarboxylation and partial oxidation

S° + Ni(CO),
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3-oxo-pentanedioic

Citric
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Citric Acid-H,0O: 200 °C, 100 MPa

(COOH), (COOH), (COOH),







Citrate

Hydrothermal
Amino Acids

200 °C, 200 MPa, pH,;=5.4

Aspartic acid

HO NH,
\[(‘)/I

HO O

NH,*
Pyr/For  Alanine




Sources of Carbon and Nitrogen for the synthesis of
purine (IMP) and pyrimidine (UMP)
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OCH N \ O N
THF _ ‘
Ribose 5’ - P
Ribose 5’ - P

Gin Synthesis of Simple
Asp -

nucleosides not yet
CAP Realized, but ...



His,
Trp, :
Nrgp Glucose 6 -phosphate —>§EZZ?;'3|
PRPP, <) [RUsEEEE
Phe, Fructose 6-phosphate
Tyr, - Erythrose 4-
Trp, phosphate *
Triose phosphate [ = gl}{)cheorgl
‘ Ser, Gly,
3-Phosphoglycerate [ _Zlivee Cyé,
Phe, * Purine
Tyr,
T, <@
KDO |
\/ lle, Lys
—
* Leu
Fatty Acetyl-CoA
isopren, [IRE
Isopren, /r Acetyl-CoA \'
Asp, Glu,
Asn, - 2-Oxoglutarate —> GlIn,
Met, Pro,
Lys, Orn,
Pyr Arg,
Succinyl-CoA




Chemistry Under What Circumstances ?

Systems with periodic influxes of H,

Into a Catalytically lined hydrothermal
reservolir

 Fracture Networks in Flank Regions of
Spreading Centers

« Hot Springs/Geyser Systems




Possibilities and Consequences:

Under plausible conditions synthesis of
useful bioorganic compounds

Detection of organic molecules that
Appear to be derived from biological

Sources may be misleading life indicators

The facile synthesis of recognizable
“bio”molecules suggest that

Hydrothermal systems may be useful
To the origins of life
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